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Abstract

A great deal of effort has been spent on both trying to specify
software requirements and on ensuring that software actu-
ally matches these requirements. A wide range of techniques
that includes theorem proving, model checking, type-based
analysis, static analysis, runtime monitoring, and the like
have been proposed. However, in many areas adoption of
these techniques remains spotty. In fact, obtaining a speci-
fication or a precise notion of correctness is in many cases
quite elusive.

In this paper we investigate an approach we call pro-
gram boosting, which involves crowd-sourcing imperfect so-
lutions to a difficult programming problem from developers
and then blending these programs together in a way that
improves their correctness.

We show how interesting and highly non-trivial tasks
such as writing regular exepressions for URLs or email ad-
dresses can be effectively crowd-sourced. We demonstrate
that carefully blending the crowd-sourced results together
consistently produces a boost, yielding results that are bet-
ter than any of the starting programs. Our experiments
on 465 program pairs show consistent boosts in accuracy
and demonstrate that program boosting can be performed
at a relatively modest monetary cost.

1. Introduction

Everyday programming involves solving a sequence of many
smaller tasks. Some of these tasks are fairly routine; others
are surprisingly challenging. Examples of challenging self-
containing tasks are coming up with a regular expression
to recognize email addresses or sanitizing an input string to
avoid SQL injection attacks. Both of these tasks are easy
to describe to most developers succinctly, yet both are sur-
prisingly difficult to get right, i.e. to implement, properly
addressing all the tricky corner cases. Furthermore, there is
room for ambiguity in both tasks: for example, even seasoned
developers can disagree as to whether john + doe@acm.org
or john..doe.@acm.com is a valid email address or whether
removing all characters outside of the a− zA− Z set is a
valid sanitization strategy for SQL injections. These exam-
ples illustrate several important points about these tricky
programming tasks: they are typically under-specified, they
may not have absolute consensus on what solution is cor-
rect, moreover, different people may get different parts of
the problem wrong.

What if we could crowd-source the answer to these tricky
tasks? We would be able to describe the task in question
in English, with all its ambiguities and under-specified cor-
ner cases. We would subsequently use the “wisdom of the
crowds” to arrive at the answer, without knowing what the
proper answer might be, a priori, but perhaps armed with

positive and negative examples. This paper explores this de-
ceptively simple idea.

1.1 In Search of Perfect URL Validation

In December 2010, Mathias Bynens, a freelance web devel-
oper from Belgium set up a page to collect possible regular
expressions for matching URLs. URL matching turns out to
be a surprisingly challenging problem. To help with testing
the regular expressions, Mathias posted a collection of both
positive and negatives examples, that is, strings that should
be accepted as proper URLs or rejected. While some ex-
ample URLs are as simple as http://foo.com/blah_blah,
others are considerably more complex and require the knowl-
edge of allowed protocols (ftps://foo.bar/ should be re-
jected) or the range of numbers in IP addresses (which is
why http://123.123.123 should be rejected).

Mathias posted this challenge to his followers of Twitter.
Soon, a total of 12 responses were collected, as summarized
in Figure 1. Note that the majority of responses were incor-
rect at least in part: while all regular expressions correctly
captured simple URLs such as http://www.cnn.com, they
often would disagree on some of the more subtle inputs. Only
one participant with a Twitter handle of @diegoperini
managed to get all the answers right1. @stephenhay came
close, getting all positive inputs right, but missing some of
the negative inputs.

Key Insight: While a detailed analysis of this experiment
is available at http://mathiasbynens.be/demo/URL-regex,
a few things are clear:

� The problem of writing a regular expression for URLs is
surprisingly complex; moreover, it is a problem where it is
easy to get started and get to a certain level or accuracy,
but getting to perfect precision on the training set is very
tough;

� potential answers provided by developers range in length
(median values 38–1,347) and accuracy (.56–1), a great
deal, as measured on a training set. Note that the most
accurate answer provided by diegoperini is in this case
not the longest;

� developers get different portions of the answer wrong, as
can be seen from the results table at the URL above;

� cleverly combining (or blending) partially incorrect an-
swers may yield a correct one.

We experienced a similar situation when trying to crowd-
source security sanitizers [13]. Sanitizers are short self-
contained string-manipulation routines that are crucial in
preventing cross-site script attacks in web applications. As
part of our experimentation, we asked developers on oDesk

1The full regex from @diegoperini can be obtained from
https://gist.github.com/dperini/729294.
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Regex Regex True True Overall
source length positive negative accuracy

Spoon Library 979 .39 .39 .67
@krijnhoetmer 115 .78 .78 .59
@gruber 71 .97 .97 .65
@gruber v2 218 1.00 1.00 .65
@cowboy 1,241 1.00 1.00 .56
Jeffrey Friedl 241 .56 .56 .59
@mattfarina 287 .72 .72 .57
@stephenhay 38 1.00 1.00 .81
@scottgonzales 1,347 1.00 1.00 .56
@rodneyrehm 109 .83 .83 .59
@imme emosol 54 .97 .97 .85
@diegoperini? 502 1.00 1.00 1.00

Figure 1: Regular expressions for URLs obtained from
http : //mathiasbynens.be/demo/url-regex.

to implement sanitizers. We then proceeded to test the
obtained sanitizers against a well known test suite (cross-
site scripting cheat sheet) [27]. All seven implementations
we considered correctly escape angle brackets. However, we
found that some of the implementations do not escape the
string &#, potentially yielding an attack. Most developers
made mistake when it came to corner cases. Only one im-
plementation of HTMLEncode made it impossible for all of the
strings our test set from appearing in its output. Once again,
this is a problem for which is is easy to get partially-correct
answers but quite difficult to get a correct solution, due to
tricky corner cases.

Our experimental results in this paper focus on the regu-
lar expression domain. However, we feel that a wide range of
problems falls into the category outline above. For example,
imagine building a better renderer for tricky HTML pages by
“blending” the result of renderers of popular browsers such
as IE, Firefox, and Chrome. These browsers will “agree” on
easy-to-parse web pages, but will likely differ on tricky and
partially broken ones. One option for the resulting “hyper-
browser” is to vote among the underlying browsers to decide
how to display the more tricky pages.

1.2 Contributions

Our paper makes the following contributions:

� We propose a technique we dub program boosting. Pro-
gram boosting is a semi-automatic program generation
or synthesis technique that uses a set of initial crowd-
sourced programs and combining (or blends) them to
provide a better result, according to a fitness function.
While other formulations are possible, we primarily fo-
cus on improving the accuracy of blended programs on a
training set of positive and negative examples. The train-
ing set is evolved as a result of automatically refining
answers to corner cases by asking the crowd to provide
disambiguations.

� We show how to implement our approach for programs or
tasks that can be expressed via regular expressions. Our
technique is a specific version of genetic programming
with custom-designed crossover (shuffle) and mutation
operations.

� We represent regular expressions using Symbolic Finite
Automata (SFAs), which enable succinct representation
while supporting large alphabets and naturally repre-
sentating the behaviour of regular expressions. We also

adapt classical algorithms, such as string-to-language
edit distance, to the symbolic setting.

� We evaluate program boosting techniques on four case
studies. In our experiments on a set of 465 pairs of reg-
ular expression programs, we observe an average boost
in accuracy of 0.1625%. The boosting effect is consis-
tent across the tasks and sources of initial regular ex-
pressions, which enhances our belief in the generality of
our approach. The average time to run the boosting pro-
cess is 45 minutes. The cost of pairwise boosting average
from 41¢ to $3, depending on the complexity of the un-
derlying task.

1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 gives
background on both crowd-sourcing and how to use it for
programming tasks. Section 3 gives an outline of our ap-
proach of using two crowds in tandem to generate programs.
Section 4 gives the detains of our implementation based on
symbolic finite automata or SFAs. Section 5 provides an ex-
perimental evaluation in the context of four case studies.
Section 6 contains a discussion of some of the outstand-
ing challenges we see for future research. Finally, Sections 7
and 8 describe related work and conclude.

2. Background

In the last several years we have seen a rise in the use of
crowd-sourcing for both general tasks that do not require
special skills (recognize if there is a cat in the picture,
reformat text data, correct grammar in a sentence) and
skilled tasks such as providing book illustrations or graphic
design assignments on request or perhaps writing short
descriptions of products.

A good example of a crowd-sourcing site for unskilled
work is Amazon’s Mechanical Turk (frequently abbreviated
as mturk); oDesk is another widely-used platform, this one
primarily used for skilled tasks. Both Mechanical Turk and
oDesk can be used for sourcing programming tasks, although
neither is specialized for that. Note that one can consider
StackOverflow and other similar programming assistance
sites as an informal type of crowd-sourcing. Indeed, these
sites are so good at providing ingredients for solving difficult
programming problems that some developers routinely keep
StackOverflow open in their browsers as they code.

So far, we have only seen a single dedicated platform for
crowd-sourcing programming, Bountify (http://bountify.
co). It allows people to post programming tasks, some in-
volving writing new code from scratch (Write a JavaScript
function to generate multiple shades of a given color), and
others involving fixing bugs in existing code (why does my
HTML table not look the way I expect and how should I tweak
my CSS to make it look right? ). These programming tasks
generally are not overly time-consuming; a typical task pays
about $5. Responses are posted publicly, leading to other
developers learning from partial answers. Finally, the poster
decides which developer(s) to award the bounty to.

Note that interactive crowd-sourcing is not the only
source of code. Indeed, one can easily use a code search
engine to find the insight one is looking for in open-source
projects. Searching for terms such as url regex using a ded-
icated code engine is will yield some possible regular expres-
sions for URL filtering as well, as will exploring a program-
ming advice site such as StackOverflow.
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Figure 2: System architecture.

3. Overview

In this section, we provide an outline of our approach to
program boosting. Note that our approach is general in
that it applies to different kinds of programs. However,
it relies on two operations that may be familiar to the
reader from genetic programming literature: shuffle (also
called crossover) and mutation. Section 4 discusses how we
implement these for regular expressions. However, in many
ways, there is a lot of ingenuity that goes into providing
sensible implementations of these operations that do not
greatly increase the size of resulting programs.

Difficult programming tasks: In this paper, we focus on a
specific class of difficult programming problems, as exempli-
fied by coming up with tricky regular expressions or sanitiz-
ers for security. To summarize, these difficult programming
tasks share the following qualities:

� their specification is provided as text and is open to
interpretation;

� virtually all developers get obvious cases right;
� virtually all developers get some corner cases wrong;
� frequently, different developers often get different corner

cases wrong;

The hope is that piecing together diffferent solutions will
yield a solution that is “more correct”.

Binary classification tasks: for practical reasons in this
paper we focus on programs that

� consume a single input
� produce a binary (yes/no) output;
� for any input, a non-specialist computer user can decide

if the answer for it should be a yes or a no.

Our observation is that while the generic crowd is not going
to help us to source programs, they will be able to recognize
correct or incorrect program behaviors. By way of analogy,
while a layperson may not be able to write a computer vision
program that recognizes the presence of a cat in an image,
humans are remarkably good at recognizing whether a given
picture has a cat in it. This two-crowd approach helps us to
both collect or source candidate programs and to refine them
by asking the untrained crowd about the correct behavior
on questionable cases.

Our approach can be expanded beyond these restrictions,
but our implementation is greatly simplified by these as-
sumptions.

Architecture: Figure 2 shows the architecture of our sys-
tem. To crowd-source a solution to the specified task, we
take advantage of two crowds, the developer crowd and the
user crowd ; the former contains developers for hire, typically
skilled in one or more languages such as Java and C++, the
latter consists of laypeople.

3.1 Iterative Genetic Algorithms

Figure 3 shows our program boosting algorithm as pseudo-
code. Let Σ be the set of all programs and Φ be the set
of all examples. In every generation, we update the set of
currently considered programs σ ⊂ Σ and the set of current
examples φ ⊂ Φ.

Note that the algorithm is iterative in nature: the process
of boosting proceeds in generations, similar to the way
genetic programming is typically implemented. The overall
goal is to find a program with the best fitness in Σ. At each
generation, new examples in Φ are produced and sent to the
crowd to obtain consensus. The algorithm is parametrized
as follows:

� σ ⊂ Σ is the initial set of programs;
� φ ⊂ Φ is the initial set of positive and negative examples;
� β : Σ×Σ→ 2Σ is the crossover shuffle function that takes

two programs and produces a set of possible shuffles;
� µ : Σ→ 2Σ is the mutation function that produces a set

of possible shuffles;
� δ : Σ× 2Φ → 2Φ generates new training examples;
� η : Σ→ N is the fitness function;
� θ ∈ N is the budget for Mechanical Turk crowd-sourcing;

In Section 4 we show how to implement operations that cor-
respond to functions β, µ, δ, and η for regular expressions
using SFAs. Note that in practice in the interest of complet-
ing faster we usually limit the number of iterations to a set
limit such as 10.

3.2 Optimizations

Our implementation benefits greatly from parallelism. In
particular, we make the two loops on lines 6 and 12 of
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1: Input: Programs σ, examples φ, shuffling function β,
mutation function µ, example generator δ, fitness func-
tion η, budget θ

2: Output: Boosted program

3: function Boost(〈σ, ε〉, β, µ, δ, η, θ)
4: while (η̂ < 1.0 ∧ θ > 0) do . Til perfect or no money
5: ϕ = ∅ . New examples for this generation
6: for all 〈σi, σj〉 ∈ FindShuffleCandidates(σ) do
7: for all σ′ ∈ β(〈σi, σj〉) do . Shuffle σi and σj

8: ϕ = ϕ ∪ δ(σ′, φ) . Generate new examples
9: σ = σ ∪ {σ′} . Add this candidate to σ

10: end for
11: end for
12: for all 〈σi〉 ∈ FindMutationCandidates(σ) do
13: for all σ′ = µ(σi) do . Mutate σi

14: ϕ = ϕ ∪ δ(σ′, φ) . Generate new examples
15: σ = σ ∪ {σ′} . Add this candidate to σ
16: end for
17: end for

. Get consensus on these new examples via mturk
18: 〈φϕ, θ〉 = GetConsensus(ϕ, θ) . and update budget
19: φ = φ ∪ φϕ . Add the newly acquired examples
20: σ = Filter(σ) . Update candidates
21: 〈σ̂〉 = GetBestFitness(σ, η)
22: end while
23: return σ̂ . Return program with best fitness
24: end function

Figure 3: Program boosting implemented as an iterative
genetic programming algorithm.

the algorithm parallel. While we need to be careful in our
implementation to avoid shared state, this relatively simple
change ultimately leads to near-full utilization on a machine
with 8 or 16 cores.

Unfortunately, our call-outs to the crowd on line 16 to
get the consensus are synchronous. This does lead to an
end-to-end slowdown in practice, as crowd workers tend to
have a latency associated with finding and starting new
tasks, even if their throughput is quite high. In the future,
we envision a slightly more streamlined architecture where
allowing speculative exploration of the space of programs
may allow us to call crowd calls asynchronously.

4. Regular Expression Manipulation

We first describe Symbolic Finite Automata (SFA) and
motivate their choice as an alternative to classical automata.
Next, we present algorithms for shuffling, mutation, and
examples generation, used in the algorithm in Figure 3.

4.1 Symbolic Finite Automata

While regular expressions are succinct and relatively easy to
understand, they are not easy to manipulate algebraically.
In particular, there is not direct algorithm for complement-
ing or intersecting them. Because of this, we opt for fi-
nite automata instead. Classic deterministic finite automata
(DFAs) enjoy many closure properties and friendly complex-
ities. However, each DFA transition can only carry one el-
ement of the alphabet, causing the number of transitions
in the DFA to be proportional to the size of the alphabet.
When the alphabet is large (UTF16 has 216 elements) this
representation becomes impractical.

Symbolic Finite Automata (SFAs) [31] extend classical
automata with symbolic alphabets. In an SFA each edge is

labeled with a predicate, rather than a single input charac-
ter. This allows the automaton to represent multiple con-
crete transitions succinctly. For example, in the SFA of Fig-
ure 4 the transition from state 10 to state 11 is labeled with
the predicate [^#--\/?\s]. Because of the size of the UTF16
set, this transition in classical automata would represented
by thousands of concrete transitions.

Before defining SFAs we first need to introduce sev-
eral preliminary concepts. Since the guards of SFA tran-
sitions are predicates, operations such as automata intersec-
tion needs to “manipulate” such predicates. Let’s consider
the problem of intersecting two classical DFAs. In classical
automata intersection, if the two DFAs respectively have
transitions (p, a, p′) and (q, a, q′) the intersected DFA (also
called the product) will have a transition (〈p, q〉, a, 〈p′, q′〉).
Now if we want to intersect two SFAs this simple syn-
chronization would not work. If two SFAs respectively have
transitions (p, ϕ, p′) and (q, ψ, q′) from A2 (where ϕ and ψ
are predicates), the intersected DFA will need to synchro-
nize the two transitions only on the values for which they
are both “triggered”, therefore the new transition will be
(〈p, q〉, ϕ ∧ ψ, 〈p′, q′〉). Moreover if the predicate ϕ ∧ ψ is
not satisfiable (does not have any character triggering it),
this transition should be removed. These examples shows
how the set of predicates used in the SFA should at least
be closed under ∧ (conjunction), and the underlying theory
should be decidable (we can check for satisfiability). It can
be shown that in general in order to achieve the classical
closure properties of regular language the set of predicates
must also be closed under negation.

Definition 1. A Boolean algebra B has components
(DB , PB , f,⊥,>,∧,¬). DB is a set of domain elements, and
PB is a set of predicates closed under Boolean connectives
∧,¬, and ⊥,> ∈ PB. The denotation function f : PB 7→ 2DB
is such that f(>) = D, f(⊥) = ∅, f(ϕ ∧ ψ) = f(ϕ) ∩ f(ψ),
and f(¬ϕ) = D \ f(ϕ). For ϕ ∈ PB, we write IsSat(ϕ)
when f(ϕ) 6= ∅ ,and say that ϕ is satisfiable. B is decidable
if IsSat is decidable.

We can now define symbolic finite automata.

Definition 2. A Symbolic Finite Automaton, SFA, A is a
tuple (B,Q, q0, F, δ) where B is a decidable Boolean algebra,
called the alphabet, Q is a finite set of states, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and
δ ⊆ Q× PB ×Q is a finite set of moves or transitions.

In the following definitions we refer to a generic SFA A.
A is deterministic if for every state q ∈ Q, there do not
exists two distinct transitions (q, ϕ, q1), and (q, ψ, q2) in δ,
such that IsSat(ϕ ∧ ψ). If A is deterministic, we define the
reflexive-transitive closure of δ as, for all a ∈ D and s ∈ D∗,
δ∗(Q, as) = δ(Q′, s), if ∀q′ ∈ Q∃(q, ϕ, q′) ∈ δ such that
q ∈ Q, and a ∈ f(ϕ), and δ∗(Q, ε) = Q. The language
accepted by A is L(A) = {s | δ∗({q0}, s) ⊆ F}.
BDD algebra: We describe the Boolean algebra of BDDs,
which is used in this paper to model regular expression
characters. A BDD algebra 2bvk is the powerset algebra
whose domain is the finite set bvk, for some k > 0, consisting
of all nonnegative integers less than 2k, or equivalently, all
k-bit bit-vectors. A predicate is represented by a BDD [30]
of depth k. The variable order of the BDD is the reverse bit
order of the binary representation of a number, in particular,
the most significant bit has the lowest ordinal. The Boolean
operations correspond directly to the BDD operations, ⊥
is the BDD representing the empty set. The denotation
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f(ϕ) of a BDD ϕ is the set of all integers n such that a
binary representation of n corresponds to a solution of ϕ.
For example, in the case of URLs over the alphabet UTF16,
we use the BDD algebra 2bv16 to naturally represent sets of
UTF16 characters (bit-vectors). We consider the SFA and
BDD implementations from the library [31].

4.2 Fitness Computation

Recall that as part of the genetic programming approach
employed in program boosting, we need to be able to assess
the fitness of a particular program. For regular expressions,
this amounts to calculating the accuracy on a training set.
The process of fitness calculation can by itself be quite time-
consuming. This is because running a large set of examples
and counting how many of them are accepted correctly by
each produced SFA is a process that scales quite poorly when
we consider thousands of SFAs and hundreds of examples.
Instead, we “melt” our positive and negative examples into
SFAs P and N , which represents the languages of all positive
and all negative examples, respectively. For any SFA A, we
then compute the cardinality of intersection sets A ∩ P and
N \ A, both of which can be computed fast. The accuracy
can be then computed as

|A ∩ P |+ |N \A|
|P |+ |N |

A challenge inherent with our refinement technique is that
our evolved example set can greatly deviate from the initial
gold set. While imperfect, we still want to treat the gold
set as a more reliable source of truth; to this end, we use
weighting to give the gold set a higher weight in the overall
fitness calculation. In our experimental evaluation, we get
reliably good results if we set gold:evolved weights to 9:1.

4.3 Shuffles

A shuffle (crossover) operation interleaves two SFAs into a
single SFA that “combines” their behaviours. An example of
this operation is illustrated on the right. Given two SFAs
A and B, the shuffling algorithm redirects two transitions,
one from A to B, and one from B to A. The goal of such
operation is that of using a component of B inside A.

An SFA can have many transitions and trying all the
possible shuffles can be impractical. Concretely, if A has
n1 states and m1 transitions, and B has n2 states and
m2 transitions, then there will be O(n1n2m1m2) possible
shuffles. Checking fitness for this many SFAs would not scale.
The shuffling algorithm is shown in Figure 5.

We devise several heuristics that try to mitigate such
blowup by limiting the number of possible shuffles. The first
technique we use is to guarantee that: 1) if we leave A by
redirecting a transition (q, ϕ, q1), and come back on state q2,
then q2 is reachable from q1, but different from it (we write
q1 ≺ q2), and 2) if we reach B in a state p1, and we leave
it by redirecting a transition (p2, ϕ, p), then p2 is reachable
from p1 (we write p1 � p2). With these two approaches, we
avoid generating shuffles for which the redirected transition
would not lead to any final state.

The next heuristics limit the number of “interesting”
edges and states to be used in the algorithm by grouping
multiple states into single component and only considering
those edges that travel from one component to another one.
In the algorithm in Figure 5, the reachability relation ≺
is naturally extended to components (set of states). The
function components returns the set of state components
computed using one of the heuristics described below.

Strongly-connected components: Our first strategy col-
lapses states that belong to a single strongly connected com-
ponent (SCCs). SCCs are easy to compute and often capture
interesting blocks of the SFA.

Collapsing
stretches: In sev-
eral cases SCCs do
not collapse enough
states. Consider the
SFA in Figure 4. In
this example, the only
SCC with more than
one state is the set
{11–12}. Moreover,
most of the phone
number regexes are
represented by acyclic
SFAs causing the
SCCs to be com-
pletely ineffective. To
address this limita-
tion we introduce a collapsing strategy for “stretches”. A
stretch is a maximal connected acyclic subgraph where
every node has degree smaller or equal to 2. In the SFA on
the right {1, 3, 5}, {2, 4}, and {9, 10} are stretches.

Figure 4: Identify-
ing components.

Single-entry, single-exit com-
ponents: Even using stretches
the collapsing is often ineffec-
tive. Consider again the SFA
on the right. The set of nodes
{0, 1, 2, 3, 4, 5, 6, 7, 8} looks like it
should be treated as a single com-
ponent, since it has a single en-
try point, and a single exit point,
however it is not a stretch. This
component clearly captures an in-
dependent part of the regex which
accepts the correct protocols of a
URL. Such components are char-
acterized by the following fea-
tures:

1. it is a connected direct acyclic
subgraph,

2. it has a single entry and exit
point,

3. it does not start or end with a
stretch, and

4. it is maximal : it is not con-
tained in a bigger component
with properties 1–3.

Such components can be com-
puted in linear time by using
a variation of depth-first search
starting in each node with in-
degree smaller than 1. The re-
quirement 4) is achieved by considering the nodes in topo-
logical sort (since SCCs are already collapsed the induced
graph is acyclic). Since this technique is generally more ef-
fective than stretches, we use it before the stretch collapsing.

In the SFA on the right, the final components will then be:
{0, 1, 2, 3, 4, 5, 6, 7, 8}, {9, 10}, {11, 12}, and {13}. Finally, if
A has c1 components and t1 transitions between different dif-
ferent components, and B has c2 components and t2 transi-
tions between different different components, then there will

5 2013/10/1



Input: SFAs A1 = (Q1, q
1
0 , F1, δ1), A2 = (Q2, q

2
0 , F2, δ2)

Output: All shuffles of A1 and A2

function shuffles(A1, A2)
C1 := components(A1)
C2 := components(A2)
for all c1 ∈ C1 do
C′1 := {c′1 | c2 ≺A1 c

′
1}

for all t→ = (p1, ϕ, p2) ∈ exit moves(c1, A1) do
for all c2 ∈ C2 do
for all i2 ∈ entry states(c2, A2) do
C′2 := {c′2 | c2 �A2 c

′
2}

for all c′2 ∈ C′2 do
for all t← = (q1, ϕ, q2) ∈ exit moves(c′2, A2) do
for all c′1 ∈ C′1 do
for all i1 ∈ entry states(c′1, A1) do
t′→ := (p1, ϕ, i2), t′← := (q1, ϕ, i1)
δnew := δ1 ∪ δ2 \ {t→, t←} ∪ {t→, t′←}
yield return (Q1 ∪Q2, q

1
0 , F1 ∪ F2, δnew)

end function
function exit moves(c, A)
return {(p, ϕ, q) ∈ δA | p ∈ c ∧ p′ 6∈ c}

end function
function entry states(c, A)
return {q ∈ QA | ∃(p, ϕ, q) ∈ δA.p 6∈ c∧p′ ∈ c∨q = qA0 }

end function

Figure 5: Shuffle algorithm.

be O(c1c2t1t2) possible shuffles. In practice this number is
much smaller than O(n1n2m1m2).

One-way shuffles: One way shuffles are a variant of those
described above in which we redirect one edge from A to B
but we do not come back to A on any edge. This roughly
corresponds to removing lines 11–15 from the algorithm in
Figure 5. If A has t1 transitions between different different
components, and B has c2 components, then there will be
O(c2t1) possible one-way shuffles.

4.4 Mutations

In its classical definition a mutation operator alters one
or more values of the input producing a mutation. In our
setting, the inputs have too many values to be altered (every
transition can carry 216 elements), and a “blind” approach
would produce too many mutations. Instead we consider a
guided approach, in which mutations take as input a SFA A
and a counterexample s, such that s is incorrectly classified
by A (s is in the target language but not in L(A), or s is not
in the target language but it is in L(A)). Using this extra
bit of information we mutate A only in those ways that will
cause s to be correctly classified. The intuition behind such
operations is to perform a minimal syntactical change in
order to correctly classify the counterexample.

Let LT be the target language. Based on whether the
counterexample s belongs or not to LT , we devise two types
of mutations.

Diminishing mutations: Given a string s 6∈ LT and a
SFA A such that s ∈ L(A) generates a SFA A′, such that
L(A′) ⊆ L(A) and s 6∈ L(A′).

Given a string s = a1 . . . an that is accepted by A, the
algorithm finds a transition (q, ϕ, q′) that is traversed using
the input character ai (for some i) when reading s and either
removes the whole transition, or simply shrinks the guard to
ϕ ∧ ¬ai disallowing symbol ai. Given a string of length k,

https://f.o/..Q/ https://f68.ug.dk.it.no.fm
ftp://1.bd:9/:44ZW1 ftp://hz8.bh8.fzpd85.frn7..
http://h:68576/:X ftp://i4.ncm2.lkxp.r9..:5811
http://n.ytnsw.yt.ee8 ftp://bi.mt..:349/

(a) Random examples

Ã¯Â»Â¿Whttp://youtu:e.com http://y_:outube.com
0.http//youtu:e.com ht:tpWWWÃ�Â ://youtube.com
h_ttp://youtu:e.com ht:tpWWW0://youtube.com
WWhttp://youtu:e.com ht:tpWWWÃ�Â 0://youtube.com
WWWhttp://youtu:e.com ht:tpWWW00://youtube.com
WWWÃ�Â http://youtu:e.com http://yo:u((t))ube.com
WWW0http://youtu:e.com ht:tpWWWÃ�Â 00://youtube.com
http:/()/youtube.com ht:tpWWW000://youtube.com
WWWÃ�Â 0http://youtu:e.com http://yo:ut((u))be.com
WWW00http://youtu:e.com http://%@youtube.com
http:/()()/youtube.com http://[]/youtube.com
http:/((/))youtube.com http://!@youtube.com
http:/()((/))youtube.com http://%y@outube.com
WWWÃ�Â 00http://youtu:e.com http://%00youtube.com
WWW000http://youtu:e.com http://%00youtube.c:0

(b) Examples generated with the edit distance approach.

Figure 6: Two approaches to examples generation.

this mutation can generate at most 2k mutated SFAs. When
there exists a state q ∈ F such that δ∗(q0, s) = q we also
generate output A = (q0, Q, F \ {q}, δ), in which the input
SFA is mutated by removing a final state.

Augmenting mutations: Given a string s ∈ LT and a
SFA A such that s 6∈ L(A) generates a SFA A′, such that
L(A) ⊆ L(A′) and s ∈ L(A′).

The input A = (q0, Q, F, δ) is a partial SFA (some nodes
have undefined transitions). Given a string s = a1 . . . an
that is not accepted by A, the algorithms finds a state q
such that, for some i, δ∗(q0, a1 . . . ai) = q, and a state q′

such that, for some j > i, δ∗(q′, aj . . . an) ∈ F . Next, it adds
a path from q to q′ on the string amid = ai+1 . . . aj−1. This
is done by adding |amid| − 1 extra states. It is easy to show
that the string s is now accepted by the mutated SFA A′.
Given a string of length k and a SFA A with n states this
mutation can generate at most nk2 mutated SFAs. When
there exists a state q such that δ∗(q0, s) = q we also output
A = (q0, Q, F ∪ {q}, δ), in which the input SFA is mutated
by adding a new final state.

4.5 Example Generation

Generating one string is often not enough to “characterize”
the language of an SFA. For each SFA A = (Q, q0, F, δ),
we generate a set of strings S, such that for every state
q ∈ Q, there exists a string s = a1 . . . an ∈ L(A), such
that for some i δ∗(q0, a1 . . . ai) = q. Informally, we want to
generate a set of strings covering all the states in the SFA.
This technique is motivated by the fact that we keep the SFA
minimal, and in a minimal SFA each state corresponds to a
different equivalence class of strings. The example generation
algorithm is described in Figure 7 and it terminates in at
most |Q| iterations. The algorithm simply generates a new
string at every iteration, which is forced to cover at least one
state which hasn’t been covered yet.

Unfortunately, this näıve approach tends to generate
strings that look “random” causing untrained crowd work-
ers to be overly conservative by classifying them as neg-
ative examples, even when they are not. For example, we
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1: Input: SFA A = (Q, q, F, δ) and “seed” string w
2: Output: Set of new training strings

3: function cover(A,w)
4: C := Q
5: while C 6= ∅ do
6: q := remove first(Q)
7: A′ := sfa passing(A, q)
8: s := closest string(A,w)
9: C := C \ states covered(s,A)

10: yield return s
11: end while
12: end function
13: // Language of all strings in A passing through state q
14: function sfa passing(A, q)
15: return concatenate((Q, q0, {q}, δ), (Q, q, F, δ))
16: end function

Figure 7: Example generation.

have obverved a strong negativity bias towards strings that
use non-Latin characters. In the case of URLs, we often get
strings containing upper Unicode elements such as Chinese
characters, which look unfamiliar to US-based workers. Ide-
ally, we would like to generate strings that look as close to
normal URLs as possible.

Edit distance: We solve this problem by using the knowl-
edge encoded in our training set of inputs. We choose to look
for strings in A that are close to some example string e. We
can formalize this notion of closeness by using the classical
metric of string edit distance. Formally, an edit is a

character insertion: given a string a1 . . . an, and a symbol
b ∈ Σ, create a1 . . . aibai+1 . . . an,

character deletion: given a string a1 . . . an, create
a1 . . . ai−1ai+1 . . . an, or

character replacement: given a string a1 . . . an,
and a symbol b ∈ Σ different from ai, create
a1 . . . ai−1bai+1 . . . an.

The edit distance between two strings s and s′, ED(s, s′)
is the minimum number of edits that transforms s into s′.
Next, we can reformulate the problem as: given a string e
(from the training input), and an SFA A, find a string s ∈
L(A) such that the edit distance between e and s is minimal.
Let witnesses(A, e) = {s |∀t ∈ L(A).ED(s, e) ≤ ED(t, e)}
be the set of strings in L(A) at minimal edit distance from
e. Our algorithm will have to output one such string. We
use the algorithm in [32] to compute the minimum edit
distance, and we modify it to actually generate the witness
string.2 The algorithm has complexity O(|s|n2), where n is
the number of states in the SFA.

Example generation in action: Figure 6a shows some ex-
amples of randomly generated strings, and Figure 6b several
strings generated using the edit distance technique. Clearly,
the second set looks less “random” and less intimidating to
an average user.

2The algorithm in [32] actually has a mistake in the base case
of the dynamic program. When computing the value of V (T, S, c)
in page 3, the “otherwise” case does not take into account the case
in which T = S and T has a self loop on character c. We fix the
definition in our implementation.

Examples
Task Specification + –

Phone numbers https://bountify.co/5b 5 4
Dates https://bountify.co/5v 9 9
Emails https://bountify.co/5c 10 7
URLs https://bountify.co/5f 14 9

Figure 8: Specifications provided to Bountify workers.

5. Experimental Evaluation

Broadly speaking, we are interested in the following mea-
sures of success for evaluating our program boosting ap-
proach:

� overall boost obtained via our algorithm;
� time required to perform the boosting;
� monetary cost of boosting;
� expansion of the test suite for the task we are interested

in created via crowd-sourcing;
� accuracy and size of the resulting programs.
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Wed 7:32 PM posted
solution

Wed 7:32 PM updated
solution

Wed 8:15 PM posted
solution

Wed 8:15 PM updated
solution

Wed 8:17 PM updated
solution

Wed 9:04 PM& posted
solution

Wed 9:13 PM updated
solution

Wed 11:00 PM ask for
clarifica-
tion

Wed 11:01 PM ask for
clarifica-
tion

Wed 11:36 PM updated
solution

Thu 10:03 AM updated
solution

Thu 10:03 AM posted
solution

Mon 7:00 PM left a
comment

Mon 7:01 PM updated
solution

Mon 7:08 PM left com-
ment

Mon 7:10 PM updated
solution

Mon 7:12 PM left com-
ment

Mon 7:12 PM left com-
ment

Figure 10: Crowd-sourcing regex for URLs at
https : //bountify.co/5f.
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Examples Candidate regexes Regex length State count
+ - Total Bountify Regexlib Other 25% 50% 75% Max 25% 50% 75% Max

Phone numbers 20 29 8 3 0 5 44.75 54 67.75 96 14.75 27 28 30
Dates 31 36 6 3 1 2 154 288 352.25 434 19 39.5 72 78
Emails 7 7 10 4 3 3 33.5 68.5 86.75 357 7.25 8.5 10 20
URLs 36 39 9 4 0 5 70 115 240 973 12 25 30 80

Figure 9: Case studies summarized.
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(a) Fitness on the golden set.
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(b) Fitness on the evolved set.

Figure 13: Aggregate comparison of different strategies

5.1 Crowd-Sourcing Setup

Before we describe our experiments, we first outline our
crowd-sourcing setup.

Bountify: In addition to using regular expressions from
blogs, StackOverflow, etc., we crowd-sourced the creation of
initial regular expressions using Bountify (http//bountify.
co). Bountify is a service that allows users to post a coding
task or technical question to the site, along with a monetary
reward starting at as little as $1. Typical rewards on Bountify
are $5–10. We posted four seperate “bounties” or requests,
each consisting of a high-level specfication, and asked for a
regular expressions implementations of these specifications.

Over the course of our expreiments, freelance developers
on Bountify submitted 14 regular expressions that were used
in the experiments. We supplemented those with regular
expressions gathered from blogs and other web sites for a
total of 33 regular expressions, as detailed in Figure 8.

Interactions with developers on Bountify sometimes get
fairly involved, as illustrated in Figure 10. This figure cap-
tures a process of getting the best regular expressions for
URLs. Each column of the table corresponds to an individ-
ual developer who participated in this bounty. The winner
was iurisilvio, who was also the first to post a solution—
this task was posted on Wednesday evening, with the first
solution from iurisilvio arriving almost instantaneously.
However, in this case, the winning soluton did not emerge
until the following Monday, after several interactions and
clarifications from the poster (us), and refinements of the
original solution. Note that this was not done in “real time”;
we could have been more agressive in responding to potential
solutions to have this process converge more quickly.

Mechanical Turk: We used Amazon’s Mechanical Turk to
classify additional examples discovered as part of boosting

and generated using the technique described in Section 3.
For each example, we used 5 Mechanical Turk workers work-
ers provided with a high-level specification of the task. For
each string in batch the Mechanical Turk worked had to clas-
sify it as either Valid or Invalid.

These strings were grouped in batches containing up to 50
strings and workers were paid a maximum of $0.25 and
a minimum of $0.05. These rates were scaled linearly de-
pending on the number of strings within a batch. Classified
strings were added to the training set assuming they reached
an agreement consensus rate of 60%. Figure 17 shows addi-
tional data on Mechanical Turk consensus.

Overall, the workers we encountered on Mechanical
Turk have been fairly positive towards our automatically-
generated tasks. A few even chose to send us comments such
as the ones shown in Figure 14 via email. Clearly, some work-
ers are concerned about doing a good job and also about
their reputation. Others expressed doubts regarding some
of the corner cases.

5.2 Experimental Setup

We applied our technique to all unordered pairs of regular
expressions (including reflective pairs 〈x, x〉) within each
of the four specification categories: Phone numbers, Dates,
Emails, and URLs. Overall, we considered a total of 465 initial
pairs. We evaluated boosting in two seperate scenarios:
first, using only the genetic programming techniques of
shuffles and mutations and second, using these techniques
and example generation and refinement with the help of
Mechanical Turk workers.

Initial regular expressions: In Figure 9, we character-
ize the inputs used in our experiment by length and by the
number of states in each resulting SFA. These values convey
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Figure 11: Initial Fitness Values

the varying levels of complexity across the input regular ex-
pressions. Columns 2 and 3 show the number of positive and
negative examples we started with for each task. Columns 4–
7 show where our 33 regular expressions come from. Bountify
is the most popular source, with 14 coming from there. The
regular expression length shown in columns 8–11 is quite
high, with the median frequently being as high as 288 for
Dates. To some degree, regular expression length reflects
the complexity of these tasks. The state count shown in
columns 12–15 is generally relatively low, due to the SFAs’s
ability to achieve good compression via sympolic represen-
tation.

Figure 11 shows the distribution of initial accuracy (fit-
ness) values by source, diffirentiating beweeen Bountify,
RegexLib, a widely-used regex repository, and other sources
such as blogs, web sites, StackOverflow, etc. Surprisingly,
the initial values obtained through Bountify are higher than

Task Initial Evolved Evolved + Crowd

Phone numbers 0.80 0.90 0.90
Dates 0.85 0.99 0.97
Emails 0.71 0.86 0.86
URLs 0.67 0.91 0.88

(a) Fitness values measured on the golden set.

Task Initial Evolved Evolved + Crowd

Phone numbers 0.79 0.88 0.91
Dates 0.78 0.78 0.95
Emails 0.79 0.72 0.90
URLs 0.64 0.75 0.89

(b) Fitness values measured on the evolved set.

Figure 12: Summary of boosting results across task specifi-
cations.

I did this HIT a few minutes ago and have a feeling that I did
not do it right. If that is the case, could you please let me fix
any mistakes so that I do not get rejected?

I have a doubt regarding Your valid URL finding HITs . Eg:
http://âIJ l.jw/s Can I consider the above URL as Invalid.

I look forward to doing your HITS. Thanks for posting them!

Thank you for providing such type of hits. Keep on posting
jobs like this. It will be helpful to me as a financial support
for my family.

Figure 14: Examples of Mechanical Turk feedback.

those obtained from RegexLib, a widely-used library of regu-
lar expression designed to be reused by a variety of develop-
ers. Overall, initial fitness values hover between .5 and .75,
with none of the regexes being either too good or too bad.

5.3 Boosting Results

Our experiments center around pairwise boosting for the
four chosen tasks: Phone numbers, Emails, Dates, URLs. We
test the quality of the regular expressions obtained through
boosting by measuring the accuracy on both positive and
negative examples. Our measurments are performed both
the golden set and the evolved set. We consider the mea-
surements on the evolved set to be more representative, be-
cause the golden set is entirely under our contol and could
be manipulated by adding and removing examples to influ-
ence accuracy measurements. The evolved set, on the other
hand, evolves “naturally”, through refinement and obtained
Mechanical Turk consensus.

Figure 12 captures our high-level results obtained from
the boosting process. Each cell captures the accuracy of
the generated program variant. Comparing the values in
columns 3 and 4 to column 2, we see that our process
consistently does result in boosting across the board. It is
worth pointing out that having a stable technique that
produces consistent boosting for a range of programs is
both very difficult and tremendously important to make our
approach predictable.

Figure 13 contains a more detailed exporation of the
boosting process portrayed as a distribution over the regu-
lar expression 465 pairs. Vertical bars are used to represent
the shape of each distributions. Both the tables and the his-
togram show that the most significant boost is consistently
obtained with the Evolve + Crowd strategy.

5.4 Boosting Process

Figure 17 characterizes the boosting process in three dimen-
sions: the number of generations, the number of generated
strings, and the measured consensus for classification tasks.
For each of these dimentions, we provide 25%, 50%, 75%,
and Max numbers in liu of a histogram.

Note that we artificially limit the number of generations
to 10. However, about half the pairs for the Emails task fin-
ish in 5 generations only. For URLs, there are always 10
generations required — none of the results converge prema-
turely. The number of generated strings is relatively modest,
peaking at 207 for Dates. This suggests that the total crowd-
sourcing costs for Mechanical Turk should not be very high.
Lastly, the classification consensus is very high overall. This
is largely due to the our candidate string generation tech-
nique in Section 4.5. By making strings look “nice” it pre-
vents a wide spread of opinions.
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Generations Generated strings Classification consensus
Task 25% 50% 75% Max 25% 50% 75% Max 25% 50% 75% Max

Phone numbers 7 8 10 10 0 6.5 20.25 83 1 1 1 1
Dates 10 10 10 10 29 45 136 207 1 1 1 1
Emails 5 5 6.5 10 2 7 17 117 1 1 1 1
URLs 10 10 10 10 54 72 107 198 0.99 1 1 1

Figure 17: Characterizing boosting process.

Shuffles (thousands) % Successful shuffles Mutations (thousands) % Successful mutations
Task 25% 50% 75% Max 25% 50% 75 Max% 25% 50% 75% Max 25% 50% 75% Max

Phone numbers 73 98 113 140 0.002 0.071 1.888 17.854 5 6 8 13 3.8 5.5 11.6 34.0
Dates 14 108 162 171 0.21 1.51 7.22 38.92 8 12 17 37 16 31 35 53
Emails 3 8 22 165 0.45 1.62 5.11 15.04 0 0 2 15 41 54 78 100
URLs 116 178 180 180 0.88 6.62 34.29 50.15 9 20 52 114 30 35 41 64

Figure 18: Successful propagation of candidates.
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Figure 15: Running times for each task, aggregated across
all pairs.

Figure 18 provides additional statistics for the shuffling
and mutation process across the tasks in the 25%, 50%, 75%,
and Max format used before. Across the board, the number
of shuffles produced during boosting is in tens of thousands.
Yet only a very small percentage of them succeed, i.e survive
to the next generation. This is because for the vast majority,
the fitness is too small to warrant keeping them around. The
number of mutations is smaller, only in single thousands,
and their survival rate is somewhat higher. This can be
explained by the fact that mutations are relatively local
transformations and are not nearly as drastic as shuffles.

5.5 Running Times

Figure 15 shows the overall running time for pairwise boost-
ing for each task. The means vary from about 4 minutes per
pair and 37 minutes per pair. Predictibly, Phone numbers
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Figure 16: Latencies for Mechanical Turk across generations
for all tasks.

completes quicker than URLs. Note that for Emails, the times
are relatively low. This correlates well with the low number
of generated strings in Figure 17. Making the boosting pro-
cess run faster may involve having low-latency Mechanical
Turk workers on retainer and is the subject of future work.

Much of the delay is due to waiting for Mechanical Turk
to complete. Figure 16 captures the latencies for Mechani-
cal Turk calls, across generations. Clearly, as the boosting
process proceeds, it spends less time waiting for Mechanical
Turk, in part because there is less ambiguity to be resolved
by Mechanical Turk workers. The only exception is Dates,
which has a slight “bump” in Mechanical Turk latencies in
the middle. Note, however, that Mechanical Turk latencies
are influenced by other factors such as day of week, time of
year, weather, etc.
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Figure 19: Costs for Mechanical Turk.

5.6 Boosting Costs

Figure 19 shows the costs of performing program boosting
across the range of four tasks. The overall costs are quite
modest, ranging between 41¢ and $3 per pair. We do see
occasional outliers on the high end costing about $12. Some
pairs do not requre Mechanical Turk call-outs at all, resulting
in zero cost.

6. Discussion

We see the following main challenges with the program
boosting approach. In this paper, we aim to provide solutions
to only some of these challenges. Addressing all of them
in a comprehensive manner will undoubtedly require much
subsequent research.

Low quality of responses: just like with other crowd-
sourcing tasks, our approach suffers from response quality
challenges, both because the crowd participant is honestly
mistaken (American Mechanical Turk workers think that
Unicode characters are not allowed within URLs) or because
they are trying to game the system by providing an answer
that is either random or obviously too broad (such as /.∗/
for regular expression sourcing tasks).

Everyone makes the same mistake: analysis of security
sanitizers in [13] illustrates that everyone gets the same
(easy) part of the programming task correct. At the same
time, everyone gets corner cases wrong as well. If everyone
gets the same corner case incorrect, voting and consensus-
based approaches are not going to be very helpful: everyone
will incorrectly vote for the same outcome, falsely raising
our confidence in the wrong solution.

Over-fitting on the training data: just like with any
other learning tasks, over-fitting the answer (model) to the
data is a potential problem. One way to mitigate this is to
force generalization, either explicitly or through limiting the
size (length or number of states or another similar metric)

of the selected program. For instance, we could favor smaller
regular expressions in our selection.

Program complexity is too high: while it is possible to
blend programs together to achieve good results on training
and testing data, it is desirable to produce resulting pro-
grams that are too complex to be understood. In some cases,
since these programs will be used as black boxes, this is fine;
in others, this is not the case.

Knowing when to stop: in the context of crowd-sourcing,
knowing when to stop soliciting answers is difficult: even
if you have absolute agreement among existing workers, it
is not clear that asking more questions may not eventually
yield disagreement about a non-obvious corner case. The
current approach in this paper does not use a more flexible
approach to getting the desired level of confidence, although
several techniques have been proposed [].

Crowd-sourcing is too expensive: the cost of crowd-
sourcing is certainly not the least important consideration.
Untrained “recognition” tasks on services such as Mechanical
Turk can cost about 2¢–5¢ a task, which is quite cheap.
Programming assignments can easily cost from $5 to $50 on
sites like Bountify. Our overall philosophy is to maximize the
number of participants while keeping the wages relatively
low as opposed to hiring one or two highly skilled and
highly compensated developers. However, this is not the only
approach.

Monetization and payment: it is not clear how to prop-
erly compensate the workers whose (programming) efforts
become blended into the end-product. There are thorny in-
tellectual property issues to grapple with. There is the ques-
tion of whether the workers should be compensated beyond
their initial payment, as the software to which they have
contributed becomes successful.

Crowd latency: is a major issue in getting program boost-
ing results faster. In the future, it may be possible to have
a set of workers on retainer with faster response times. An-
other option is to design a more asynchonous approach that
would speculatively explore the program space.

Sub-optimality: because we are evolving the training set,
it is possible that in earlier generations we abandoned pro-
grams that in later generations would appear to be more
fit. One way to compensate for this kind of sub-optimality
of our technique is to either revisit the evaluation once the
evolved set has been finalized, or to inject some of the previ-
ously rejected programs from past generations into the mix
at later stages.

7. Related Work

Below we provide a brief overview of some of the related
literature.

Genetic algorithms: Genetic programming methods al-
ter structures that represent members of a population to
produce a result that is better according to fitness or opti-
mality conditions. Evolutionary approaches for building au-
tomata and state machines have been widely studied. Early
work by Fogel et al. [6] evolved finite state machines to
predict symbol sequences. Others have extended these tech-
niques to build modular systems that incorporate indepen-
dent FSMs to solve maze and grid exploration problems [4]
or to predict note sequences in musical compositions [14]. In
software engineering, genetic programming approaches have
been applied to fixing software bugs [7] and software opti-
mization [5].
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Learning DFAs: Grammatical inference is the study of
learning a grammar by observing examples of an unknown
language. This problem was introduced by Gold [9], who
showed that a learning algorithm can produce a new gram-
mar that can generate all of the examples seen so far in poly-
nomial time. Many variants of this problem have been stud-
ied, including different language classes and different learn-
ing models. Relevant to this paper is the study of producing
a regular language from labeled strings, where the learning
algorithm is given a set of positive and negative examples
that have been labeled by an unknown target DFA and the
task is to predict the output of the target DFA on new exam-
ples. This problem has been shown to be hard in the worst
case [15, 25], but many techniques have been demonstrated
to be practical in the average case. The L-star algorithm [1]
can infer a minimally accepting DFA but assumes that the
target language is known and that hypothesized grammars
can be checked for equivalence with the target language.
State merging algorithms [18] relax the requirement for a
minimal output, and work by building a prefix-tree accep-
tor for the training examples and then merge states together
that map to the same suffixes. A number of extensions to
this technique have been proposed [16, 17, 23]. Evolutionary
approaches to learning a DFA from positive and negative
examples have also been proposed [21, 22].

Learning regular expressions: Automatic generation of
regular expressions from examples has been explored in the
literature for information extraction. Galassi et al. [8] pre-
sented a technique to extract events from DNA sequences, by
learning simple regular expressions that anchor the relevant
strings. Others have applied evolutionary approaches to infer
regular expressions subject to different fitness metrics. These
techniques use various types of transformations on the reg-
ular expressions themselves, rather than a DFA representa-
tion [3, 10, 19]. Furthermore, the alphabet size is minimized
to either extracted tags from text processing tools or the
ASCII character set. In contrast, our approach directly ma-
nipulates the automata representing the regular expression
and our transformation techniques can handle more complex
regular expressions and large alphabets.

Program synthesis: Recent work has investigated auto-
matic synthesis of program fragments from logical and ex-
ample based specifications [11, 12, 28, 29]. A common thread
of this research is that when the high-level insights of how
a solution can be described, errors often appear in the low-
level details. These tools use formal methods to aid in the
construction the low-level implementation of a specification.
Our technique differs in that it aims to address the issue of
corner-cases in specification implementations by blending a
diverse collection of solutions through crowd-sourcing.

Crowd-sourcing: The emergence of crowd-sourcing plat-
forms such as Amazon’s Mechanical Turk has led to a va-
riety of inquiry into the manner in which human computa-
tion can be incorporated into programming systems. Several
platforms [2, 20, 24, 26]. have been designed to abstract the
details of using a crowd-sourcing service away from the pro-
grammer, so that issues of latency, quality control and cost
are easier to manage. Our work introduces a novel use of
crowd-sourcing to automatically refine the training set in
our genetic programming algorithm.

8. Conclusions

This paper presents a novel crowd-sourcing approach to
program synthesis called program boosting. Our focus is

difficult programming tasks, which even the most expert of
developers have trouble with. Our insight is that the wisdom
of the crowds can be brought to bear on these challenging
tasks. In this paper we show how to use two crowds, a crowd
of skilled developers and a crowd of untrained computer
workers to successfully produce solutions to complex tasks
that involve crafting regular expressions.

We have tested our approach to program boosting on four
complex tasks, we have crowd-sourced 33 regular expressions
from Bountify and several other sources, and performed pair-
wise boosting on them. We find that our program boosting
technique is stable: it produces consistent boosts in accru-
racy when tested on 465 pairs of crowd-sourced programs.
The cost of program boosting is generally quite modest,
varying between several cents and about $3 for the untrained
crowd and about $10–20 for the skilled crowd, depending on
the complexity of the task.
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